
Differential Evolution with parallelised objective
functions using CUDA

Primož Kralj
primoz@codehunter.eu

Abstract—Differential Evolution (DE) algorithms can be used
in various fields for problem solving where we need to find
an optimal (or close to optimal) solution but we don’t have a
clear, straightforward method to compute it. Unfortunately it
can take a very long time to produce such a solution when
implemented serially or even parallel on a Central Processing
Unit (CPU). To reduce computation time we can utilise the
power of Graphics Processing Units (GPU) using Compute
Unified Device Architecture (CUDA) technology. Since GPUs are
designed purely for computational tasks as opossed to CPUs
which are more general-work oriented they can provide a great
architecture for parallelising our DE method.

Keywords - Differential Evolution, Compute Unified Device Archi-
tecture (CUDA), Graphics Processing Unit (GPU), Computational
Performance

I. INTRODUCTION

Differential Evolution is a widely known optimization tech-
nique proposed by R. Storn and K. Price [1] where the
main idea is to generate new population in each generation.
The population consist of multiple vectors which represent
a candidate solution each containing a set of real-valued
numbers. These are the parameters of the optimization problem
we are solving usually referred to as genes from biology
jargon. The new population is formed from the population
of previous generation with the means of genetic operators
- mutation, crossover and selection all of which is described
more profoundly in Section II Related work.
Implemented DE is tested using 28 functions from CEC’13
single objective real-parameter optimization competition [2]
all of which are minimization problems. These are evaluated
using sequential DE algorithm and CUDA-optimized parallel
algorithm.

II. RELATED WORK

Our endeavour to develop a DE algorithm for minimizing
the problem using CUDA is based upon L. P. Veronese’s
and R. A. Krohling’s research paper ”Differential Evolution
Algorithm on the GPU with C-CUDA” [3]. However, we took
a different approach to parallelizing DE using CUDA; in the
mentioned paper authors are parallelizing the execution of
genetic operators which are running on the GPU, speeding-
up the process by atleast a factor of 20 (figure 2 and 3
in the related research paper). We are, on the other hand,
trying to boost the execution by parallelizing the test functions

themselves which is covered in Section III Implementation.
In the related article DE idea is explained as follows. Each
candidate solution is described as a vector denoted by x =
[xi1, xi2, xi3, ..., xin]

T where i = 1, ..., Np represents individ-
ual’s index in the population and n represents the individual’s
dimension which is in this case the dimension of the problem
- in other words, number of parameters in our test functions.
Before the DE is started the initial population is generated
randomly. For our case it is important to take into consider-
ation the evaluation criteria from CEC13 competition which
states that the search range is in the interval [−100, 100]],
meaning random numbers for initial population need to be
generated from within this interval. After the initialization
the DE can be started where in each generation the genetic
operators are applied to the population. For each individal
mutation is performed first, then crossover and lastly selection.

A. Genetic operators

Mutation is the first operator which takes a random indi-
vidual to which a weighted difference of two other random
individuals is added. None of the three should be the same.
The mutated vector vi is calculated as

vi = xr1 + Fm(xr2 − xr3) (1)

where r1,r2 and r3 are random numbers representing
individuals indexes in the population, i is the index of
mutated individual and Fm is the mutation factor which
weights the difference between two random individuals by
which we avoid search stagnation, as noted in the linked
paper. Authors are suggesting the values in the range of
[0.5, 1] .

Crossover is the second operator which produces a new
set of Np individuals. Each individual has some parameters
(genes) from the parent in the original population and some
from the mutated individual where the ratio is determined by
crossover rate Cr for which authors recommend the interval
[0.8, 1]. This leads to Np trial individuals, each denoted as:

ui,j = {
vi,j if rand(0,1) ≤ Cr or j=k
xi,j otherwise (2)

where i stands for current index in the population and j
for current parameter. Number k is a random number from

interval {1, ..., Np} to make sure that at least one parameter
from mutant individual is selected into trial individual.

Selection is the last genetic operator which simply deter-
mines which one of the two individuals is better comparing
the parent vector xi and the trial vector ui. To determine
which is actually better we need to use some objective function
f() which, in our case, are the CEC2013 competition test
functions. Since they are minimization problems the individual
selected into new population is

xi = {
ui if f(ui) ≤ f(xi)
xi otherwise (3)

III. IMPLEMENTATION

Firstly the basic DE was implemented using genetic
operators described above. The pseudocode is displayed in
Listing 1 which also places other listings in context. To
paralellize the execution of evalution functions the memory
on GPU must be allocated as shown in Listing 2. The variable
POP SIZE holds the size of the population, PROB DIM
holds the number of parameters in an individual thus the
dimension of an individual and TEST FUNCS the number of
test functions which is, in our case, 28. Points of interest are
d mutants which is a one-dimensional array containing all the
parameters for every individual in the population. It would be
more intuitive if 2D array would be used but that would cause
overhead by copying each individual to the device allocated
memory whereas with 1D copying occurs just once. and d f
which is also a 1D array containing all the calculated fitnesses
in a way that for each individual it contains 28 values (28
objective functions results) which are then reduced to one
fitness value per individual in the host code as shown in last
line of Listing 3. Other arrays are holding the internal values
and are not of a big importance to us. Still in Listing 1, the
arrays are allocated using cudaMalloc function and some data
is coppied from host to device - OShift and M arrays which
have been filled in some other function with existing data
from file. Since this data is used by test functions running on
GPU it needs to be coppied to the device memory. Lastly in
Listing 1 we set the contents of the remaining arrays to zero.
Listing 3 containts the most important part of the code which
is the execution of the kernel function. The kernel is the
parallel portion of the application which is executed by many
threads on the device. Before the kernel invocation the altered
(by genetic operators) population is coppied to the device
memory. Next the for loop is started with the kernel call. The
purpose of the loop is to process 32 individuals per one kernel
call meaning in each iteration 32 fitnesses - each consisting of
28 subfitnesses (28 test functions) - are calculated. We came
to this optimal number by trial and error. The values inside
angled brackets in kernel function invocation (〈〈〈32, 28〉〉〉
imply that 32 blocks will be launched, each consisting of 28
threads. This way each block represents one individual and

each thread calculates one of the test functions. GPU actually
process threads in warps of 32 but since there are only 28 test
functions 4 threads will do no work. After each kernel call
cudaDeviceSynchronize() function is called which blocks the
execution until all threads finish. After the for loop we copy
the results back to host and sum it up so each individual gets
one fitness value. This could be implemented on the GPU
too decrease the execution time even further.
In Listing 4 the kernel code is displayed. First we check that
current thread number is under 28 since we have only 28 test
functions with threadIdx.x which is a CUDA built-in variable.
Then we check the thread’s index again in a switch clause to
determine which test function it will execute.
Lastly, in Listing 5, test function’s declaration is shown.
Because it executes on the GPU and is called from kernel
function, device qualifier is written in front of it. Notice
that kernel function too has a CUDA qualifier, global ,
which means that it is executed on the GPU but called from a
host environment (CPU). Functions with device qualifier
on the other hand can not be called from host.

i n i t i a l i z e ()
e v a l u a t e p o p u l a t i o n ()

whi le (b e s t f i t n e s s >THRESHOLD | | g e n e r a t i o n<MAX GENERATIONS)
{

a p p l y g e n e t i c o p e r a t o r s ()
e v a l u a t e p o p u l a t i o n ()

}

Listing 1. DE pseudocode

double ∗d mutan ts ,∗ d f ,∗ d OShi f t ,∗d M,∗ d y ,∗ d z ;

i n t d b l b y t e s = s i z e o f (double) ;
cudaMal loc ((void∗∗)& d mutan ts , POP SIZE∗PROB DIM∗ d b l b y t e s) ;
cudaMal loc ((void∗∗)&d f , POP SIZE∗TEST FUNCS∗ d b l b y t e s) ;
cudaMal loc ((void∗∗)& d OShi f t , PROB DIM∗10∗ d b l b y t e s) ;
cudaMal loc ((void∗∗)&d M,10∗PROB DIM∗PROB DIM∗ d b l b y t e s) ;
cudaMal loc ((void∗∗)&d y , POP SIZE∗28∗PROB DIM∗ d b l b y t e s) ;
cudaMal loc ((void∗∗)&d z , POP SIZE∗28∗PROB DIM∗ d b l b y t e s) ;

cudaMemcpy (d OShi f t , OShi f t , PROB DIM∗10∗ d b l b y t e s ,
cudaMemcpyHostToDevice) ;

cudaMemcpy (d M , M, 10∗PROB DIM∗PROB DIM∗d b l b y t e s ,
cudaMemcpyHostToDevice) ;

cudaMemset (d y , 0 , POP SIZE∗28∗PROB DIM∗ d b l b y t e s) ;
cudaMemset (d z , 0 , POP SIZE∗28∗PROB DIM∗ d b l b y t e s) ;
cudaMemset (d f , 0 , POP SIZE∗TEST FUNCS∗ d b l b y t e s) ;

Listing 2. Initialization

cudaMemcpy (d mutan ts , mutan t s , POP SIZE∗PROB DIM∗d b l b y t e s ,
cudaMemcpyHostToDevice) ;

f o r (i =0 ; i<POP SIZE / 3 2 ; i ++)
{

t e s t f u n c <<<32,28>>>(&d mutan t s [i ∗32] ,
&d f [i ∗32∗TEST FUNCS] ,
&d y [i ∗32∗TEST FUNCS∗PROB DIM] ,
&d z [i ∗32∗TEST FUNCS∗PROB DIM] ,
d OShi f t , d M , PROB DIM) ;

c u d a D e v i c e S y n c h r o n i z e () ;
}

cudaMemcpy (f , d f , POP SIZE∗TEST FUNCS∗d b l b y t e s ,
cudaMemcpyDeviceToHost) ;

s u m F i t n e s s e s (f i t n e s s e s , f) ;

Listing 3. Evaluation

g l o b a l void t e s t f u n c (double ∗mutan t s , double ∗ f s ,
double ∗y p t r , double ∗ z p t r ,
double ∗Os , double ∗Mr , i n t nx)

{
i f (t h r e a d I d x . x<28){

sw i t ch (t h r e a d I d x . x){
case 0 :

s p h e r e f u n c (& m u t a n t s [b l o c k I d x . x∗nx] ,
&f s [b l o c k I d x . x∗28+ t h r e a d I d x . x] , nx ,
&y p t r [b l o c k I d x . x∗(28∗nx)+ t h r e a d I d x . x∗nx] ,
&z p t r [b l o c k I d x . x∗(28∗nx)+ t h r e a d I d x . x∗nx] ,

Os , Mr , 0) ;
break ;

case 1 :
e l l i p s f u n c (& m u t a n t s [b l o c k I d x . x∗nx] ,

&f s [b l o c k I d x . x∗28+ t h r e a d I d x . x] , nx ,
&y p t r [b l o c k I d x . x∗(28∗nx)+ t h r e a d I d x . x∗nx] ,
&z p t r [b l o c k I d x . x∗(28∗nx)+ t h r e a d I d x . x∗nx] ,

Os , Mr , 1) ;
break ;

case 3 :
[. . .]

}
}

}

Listing 4. Kernel function

d e v i c e void s h i f t f u n c (double ∗x , double ∗ x s h i f t ,
i n t nx , double ∗Os) { . . . }

Listing 5. One of the test functions

IV. PERFORMANCE EVALUATION

The experiments were conducted on a laptop with Intel
core i7 2GHz quadcore CPU and 8GB DDR3 1066MHz of
main memory. GPU is NVIDIA GeForce GT540M with 2GB
memory, 2 multiprocessors and Fermi architecture able to
execute 96 threads at once, while the CUDA architecture is
revision 2.1. Firstly experiments were run to determine the
optimal size of the population size (although this should not
matter in the real world tests). We found out that the ratio of
consumed time was in favour to GPU while the population
size was kept low, that is 64 individuals. If the population
size exceeds this number the GPU and CPU execution times
become the same or even GPU becomes slower. This is a major
flaw of the current implementation, caused by the appliance
of CUDA to the algorithm and will be inspected thoroughly in
the future. In this field a lot of trial and error is needed to find
out the optimal solution. The major improvement concerning
execution time would also be the calculation of the sums of
test functions on GPU inside of the kernel function rather than
on the CPU. Despite this the results of the execution on the
GPU are almost 4-times faster than on the CPU when the
population size is small enough as shown in Figure 1.

Fig. 1. computing time for test functions with population size 16

Fig. 2. computing time for test functions with population size 32

V. CONCLUSION

In this research paper we describe differential evolution al-
gorithm along with the genetic operators needed to implement
it. The implementation of CUDA parallelized test functions is
also presented resulting in drastical reducement of the time
needed to find a solution to a problem. This technology has
proved its benefits unnumbered times by now in different fields
of computing. With new hardware CUDA is providing more
power as time goes on with the ability to run more and more
concurrent threads on the GPU. A big role in the effectiveness
plays the manner in which we apply the technology to our
problem. If designed well, it takes the computing to the next
level.

REFERENCES

[1] R. Storn and K. Price, ”Differential Evolution — a simple and efficient
heuristic for global optimization over continuous spaces” Journal of
Global Optimization, vol. 11, no. 4, pp. 341–359, 1997.

[2] J. J. Liang, B. Y. Qu, P. N. Suganthan, Alfredo G. Hernández-
Dı́az, ”Problem Definitions and Evaluation Criteria for the CEC
2013 Special Session on Real-Parameter Optimization” http:
//www.ntu.edu.sg/home/EPNSugan/index files/CEC2013/Definitions%
20of%20%20CEC%2013%20benchmark%20suite%200117.pdf.

[3] De Veronese, L. P., and Renato A. Krohling. ”Differential evolution
algorithm on the GPU with C-CUDA.” Evolutionary Computation (CEC),
2010 IEEE Congress on. IEEE, 2010.

